

 Navigation

 	
 index

 	
 next |

 	aura 1.3.0 documentation

Aura Documentation

Aura is a package manager for Arch Linux. It’s main purpose is as an
“AUR helper”, in that it automates the process of installating packages
from the Arch User Repositories. It is, however, capable of much more.

General

	Aura 2 Design
	Preface

	Mission Statement

	Functionality
	General

	Other

	Plugins

	Aesthetics

	Haskell Requirements

	Package Requirements

	Arch Linux Specifics
	ABS Package Building/Installation

	AUR Package Building/Installation

	PKGBUILD/Additional Build-file Editing

	AUR Interaction

	Coding Standards
	Record Syntax

	Aura Changelog

	Aura Development Roadmap

Guides

	Language Localisation Guide
	What You Need

	Getting Started
	Step One - Tell Haskell About the New Language

	Step Two - Adding your Language’s Locale Code

	Step Three - Translation

	Step Four - Command-line Flag

	Step Five - Pull Request

	Step Six - You’ve Helped Others who Speak your Language

	Hacking Aura
	For Haskell Study

	For Aura Hacking

	The Aura Monad
	Why the Aura Monad?

	Notes on Aura Monad Style

	String Dispatching

	Automatic Package Record Backups with Cron

Announcements

	Aura 1.1 Release
	New with Version 1.1

	On the Horizon

 Copyright 2014, Colin Woodbury.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	aura 1.3.0 documentation

Aura 2 Design

Preface

This is a design document for version 2 of Aura [https://github.com/fosskers/aura]. Note that
specifications are written in present tense, as in, “Aura does this”
even if at the time of writing those features aren’t implemented yet.
This is to ensure that the document can act as a reference for Aura’s
behaviour post-release.

Mission Statement

Aura is a cross-distribution package manager for GNU/Linux systems. It
is based around a distribution-specific Hook system for custom
build/install behaviour, while maintaining a custom interface across all
distros. Aura itself provides:

	Dependency management.

	Package downloading.

	Package-state backups/restoration.

Aura’s authors recognize that attempting to create universal standards can
be problematic [http://www.xkcd.com/927/], but that is precisely why Aura exists. By having a unified
interface over multiple packaging standards, users can transition between
distributions more easily, and distribution developers can avoid reinventing
the wheel by writing their own package management software.

Functionality

General

By default, Aura handles three types of packages:

	Repository Packages

	Prebuilt binaries available direct from the user’s Distribution.

	Foreign Packages

	Packages that generally need to be compiled by the user. Their
versioning/source locations may be managed by the Distribution is some way.

	Local Packages

	Packages installed on the user’s system. Records of them and the files
belonging to them are stored in a database, and package files themselves are
stored in a cache (in /var/cache/ or elsewhere).

A number of operations can be performed on these package types, as explained
below.

Program Flow

[image: _images/programFlow.png]

Common Behaviour

As can be gleamed from the program flow chart, the “capital letter”
operators pertaining to packages share the same functionality metaphors.

	Installation: aura -{S,F,L} <packages>

	Searching: aura -{S,F,L}s <regexp-like-pattern>

Output sample:

$> aura -Ss nvidia
extra/nvidia 337.25-3 [installed]
 NVIDIA drivers for linux
extra/nvidia-304xx 304.121-5
 NVIDIA drivers for linux, 304xx legacy branch
extra/nvidia-304xx-libgl 304.121-2
 NVIDIA drivers libraries symlinks, 304xx legacy branch

Aura will fail silently when no pattern is given.

	Info Lookups: aura -{S,F,L}i <packages>

To the question, “What does it mean to install a local package?” consider
the following the use cases:

$> aura -L foo-1.2-1.pkg.tar.gz -- Installing a prebuilt package tarball.

$> aura -L bar
aura >=> Which version of `bar` do you want?
1. bar-1.1.1-1
2. bar-1.2.1-1
3. bar-1.2.3-1
>> -- You choose which to install from your _local_ cache.

Local Package Removal

Local packages may be removed singularly, or in groups.

Usage:

	Just the packages named: aura -R <packages>

	Packages named and all deps (recursive): aura -Rr <packages>

Local Package Backups

The state of locally installed packages may be recorded and restored
at a later date.

Usage:

	Store a snapshot of all installed packages: aura -B

	This record is stored in /var/cache/aura/states.

	Filenames are of the form: YYYY.MM.MonthName.DD.HH.MM.

	The data itself is stored as JSON to ease use by other
tools.

	Restore a snapshot: aura -Br

{ "date": "2014-04-09",
 "time": "20:00",
 "packages": [{ "pkgname": "alsa-lib",
 "version": "1.0.27.2-1" },
 // more packages here
]
}

Other

Dependency Resolution

	AUR dependencies are no longer resolved through PKGBUILD bash
parsing. The AUR 3.x API includes the necessary dependency
information.

	Resolution Successful: Data in the form is yielded. These are
groups of packages that may be built and installed simultaneously.
That is, they are not interdependent in any way.

	Version Conflicts:

	Dependency resolution fails and the build does not continue.

	The user is shown the chart below so it is clear what dependencies
from what packages are causing issues.

	All packages that had dependency issues are shown.

	Supplying the --json flag will output this data as JSON for
capture by other programs.

+----------+--------+----------+---------+
| Dep Name | Parent | Status | Version |
+==========+========+==========+=========+
foo	None	Local	1.2.3
foo	bar	Incoming	< 1.2.3
foo	baz	Incoming	> 1.2.3
+----------+--------+----------+---------+			
curl	git	Local	7.36.0
curl	pacman	Incoming	7.37.0
+----------+--------+----------+---------+			
lua	vlc	Incoming	5.2.3
lua	conky	Incoming	5.2.2
+----------+--------+----------+---------+

// As JSON:
{ [{ "Name": "foo",
 "Local": { "Parent": "None",
 "Version": "1.2.3" },
 "Incoming": [{ "Parent": "bar",
 "Version": "< 1.2.3" },
 { "Parent": "baz",
 "Version": "> 1.2.3" }
]
 },
 { "Name": "curl",
 "Local": { "Parent": "git"
 "Version": "7.36.0" },
 "Incoming": [{ "Parent": "pacman",
 "Version": "7.37.0" }
]
 },
 { "Name": "lua",
 "Local": "None",
 "Incoming": [{ "Parent": "vlc",
 "Version": "5.2.3" },
 { "Parent": "conky",
 "Version": "5.2.2" }
]
 }
]
}

Dependency Information Output

	Information for all immediate dependencies for any given package can
be output in human-readable format by default with -{A,S}d.

	Adding --recursive will yield all dependencies and their
dependencies as well.

	Adding --json will output this information in JSON for use by
other software that may sit on top of Aura.

Concurrent Package Building

	Package data is returned from dependency checking in the form
[[Package]] (see Dependency Resolution). Each sublist of
packages have no interdependencies, so they are built concurrent to
each other and then installed as a block.

PkgInfo

Package searching and Info lookup algorithms work with PkgInfo data.
It holds:

	Repository name

	Package name

	Version

	Description

	Architecture

	URL

	Licenses

	“Provides”

	Dependencies

	“Conflicts With”

	Maintainer

	Optional fields (provided as [(Text,Text)]):

	Download/Install sizes

	Group

	Votes

	GPG information

	etc.

Abnormal Termination

Users can halt Aura with Ctrl-d. The message Stopping Aura... is
shown. All temporary files in use are cleared here.

Colour Output

All output to terminal (save JSON data) is output in colour where
appropriate. The user can disable this with --no-color{ur,r}.

Usage Tips

The user is shown usage tips when waiting for dependencies to resolve,
etc. A number of tips are Aura-centric, but distro-specific ones can be
defined in AuraConf.

Plugins

Like XMonad, behaviour is built around hooks/plugins that are themselves
written in Haskell. Each Linux distribution writes and provides to
AuraConf functions that fill certain type/behaviour requirements
as explained below.

AuraConf

AuraConf is Aura’s configuration file. Here, distributions and users can add
Hooks to define custom behaviour for their native packaging system.
The command aura --recompile rebuilds Aura with new Hooks.
Also, the following paths can be defined in this file:

	Package cache.

	Aura log file.

	Default build directory.

	Mirror URLs for binary downloads.

	TODO: What else?

Package Typeclass Instances

Each Hook family (as described below) operates with one type of package.
Any package type has to implement the Package typeclass. It takes
the following shape:

class Package p where
 -- Converts a package name to its ADT form. Upon failure,
 -- yields its name wrapped in a `Left`.
 package :: Text -> IO (Either Text p)

 -- All Packages must be able to present their prime information
 -- in a standard way for Aura output functions.
 render :: p -> PkgInfo

Hooks ADT

Hooks are passed through Aura as an ADT of functions.

{-# LANGUAGE RankNTypes #-}

data Hooks p = Hooks { info :: Package p => Text -> IO [p]
 , search :: Package p => Text -> IO [p]
 , -- more to come
 }

Aesthetics

Size Information

Unless -q is passed to Aura, the following information is
displayed before installation from the official repositories.

Total download size : xx MiB
Net upgrade size : xx MiB

The units are displayed with binary prefixes, such as: B, KiB, MiB, GiB and TiB.

Localisation

Aura is available for use in multiple languages. Language can be set via
environment variables or by using Aura flags that correspond to that
language. Note that use of a flag will override whatever environment
variable is set. Each language has an English name and its native
equivalent (accents and other non-ascii characters are compatible). For
example:

	--croatian and --hrvatski

	--french and --français

Version Information When Upgrading

Whenever a package needs an upgrade, unless -q is passed to
Aura, then a detailed chart is produced, as described below.

The coloured part is denoted with <colour></colour> tags, enclosing the
text to colourise such as <colour>text to colourise</colour>.

New Package Dependency Needed

⇒ New package needed:
repository/package 1.0-1 (required by xxx) (Net change: ±xx MiB)

New Package Release

⇒ New package release:
repository/package 1.0-1 --> 1.0-<green>2</green> (Net change: ±xx MiB)

New Package Version

⇒ New package version:
repository/package 1.0-1 --> 1.<green>2-1</green> (Net change: ±xx MiB)

Aura Versioning

	Aura uses Semantic Versioning [http://semver.org/], meaning it’s version numbers are of
the form MAJOR.MINOR.PATCH.

Haskell Requirements

Strings

All Strings are represented as from Data.Text. This is available in
the text package from Hackage. The following language pragma should
be used where appropriate for String literals being converted to
automatically:

{-# LANGUAGE OverloadedStrings #-}

JSON Data

All JSON input and output is handled through the aeson and
aeson-pretty packages.

Parsing

All parsing is done with Parsec. Regular Expressions are no longer
used anywhere in Aura.

Other Libraries

Information on other Hackage libraries used in Aura can be found
here [https://github.com/fosskers/aura/issues/223].

Package Requirements

Aura must be available in the following forms:

	haskell-aura

	An AUR package pulled from Hackage, contains only the Aura “shell” layer.
The user must install another package to get the Arch Linux Hooks, and then
build the executable themselves.

	aura

	Official Arch-flavoured Aura, built and configured in a cabal sandbox.
cabal-install is the only Haskell related dependency.

	haskell-aura-git

	Most recent version of Aura, as found on its source repository.

	aura-legacy

	A static copy of Aura 1. Has Haskell dependencies.

Arch Linux Specifics

ABS Package Building/Installation

	There is no longer a -M option. All ABS package interaction is
done through -S.

	Installs prebuilt binaries available from Arch servers by default.

	Build options:

	If the user specifies --build, the package will be built manually
via the ABS.

AUR Package Building/Installation

	Builds manually by default, as there is no prebuilt alternative for
the AUR (by design).

PKGBUILD/Additional Build-file Editing

	Support for customizepkg is dropped, as AUR 3.x provides
dependency information via its API.

	Users can edit included .install files and the behaviour of
PKGBUILDs with --edit. This is done after dependency checks have
been made via the data from the AUR API. Users are urged not to
edit dependencies at this point, as only makepkg, not Aura, will
know about the changes.

	If you do want to build a package with different dependencies,
consider whether there is value in creating your own forked package
for the AUR (named foo-legacy, etc.). Others may benefit from
your effort.

	If you are trying to fix a broken package, rather than circumventing
the problem by building manually with makepkg, please contact the
maintainer.

AUR Interaction

	AUR API calls are moved out of Aura and into a new Hackage package
aur (exposing the Linux.Arch.Aur.* modules).

	It provides conversions to and from JSON data and Haskell data.

	This is preparation for future versions of Aura that allow use in
other Linux distributions by swapping out sections of their back-end
(with modules like Linux.Debian.Repo etc.)

Coding Standards

Record Syntax

When using record syntax for ADTs, function names should be suffixed
with “Of” to reflect their noun-like nature:

data Package = Package { nameOf :: String
 , versionOf :: Version
 , depsOf :: [Package] }
 deriving (Eq, Show)

 Copyright 2014, Colin Woodbury.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	aura 1.3.0 documentation

Aura Changelog

1.3.5

	Aura now uses version 5 of the aur package, to fix a critial bug

	Updated Spanish and Polish

1.3.4

	Bash parser bug fix. Fixes some packages.

1.3.3

	Bash parser extended to be able to handle bash array expansions.
This enables packages with more (Bash-wise) complex PKGBUILDs to build
properly.

1.3.2.1

	-Ai and -As show popularity values.

	aur4 is no longer referenced.

	Yes/No prompts are now localized.

	Aura can be built with stack.

	Updated German translation.

1.3.1.0

	Aura builds against GHC 7.10.

	Updated German and Russian translations.

1.3.0.4

	Must use –builduser when building as root.

	Bug fix regarding –needed.

	Updated Portuguese translation.

1.3.0.3

	Pacman flags –ignore and –ignoregroup now work.

	Bug fixes.

1.3.0.2

	(Bug fix) If a user tries to install a package in IgnorePkg, they
will now be prompted.

	Man page updated.

	Dependencies updated.

1.3.0.1

	(Bug fix) Tarballs are now downloaded from a URL provided by the RPC.

1.3.0.0

	Last major version of Aura 1! We have entered the design phase for Aura 2,
the implementation of which will transform Aura into a multi-distro
package management platform.

	Aura 1 itself has entered “legacy” mode. The only releases to be made
on Aura 1 after this will be of 1.3.0.x. You’ll likely never see
1.3.1.x.

	Befitting a major release, we have:
	New AUR interaction layer via the aur package. This fixes nasty
“AUR lookup failed” errors.

	http-conduit dropped for wreq, which is much easier to use.

	Better version number parsing/comparison on installation/upgrading.

	Package state backups have had their format changed. This BREAKS _all_
previously saved states. Please delete your old ones!

	Implemented extended –needed functionality for the AUR side of Aura.
AUR packages won’t build if they’re already installed.

	Indonesian translations!

	Other updated translations.

1.2.3.4

	zsh completions completely redone (thanks to Sauyon Lee!)
Having aur-git installed will let you auto-complete on AUR packages.

1.2.3.3

	-As –{head,tail} can now be passed numbers to truncate the results
to any number you want. The default is 10.

	Updated Russian translation.

1.2.3.2

	
	Expanded Bash completions:

	
	Aura Only

	
	Expanded completion for all options and search sub-options

	Package completion for -M/–abssync

	Completion for orphans using self-generated list

	Pacman

	
	Include completion for all pacman options

	Directory or file completion for some common options

	Use –dryrun with -A and -M install options to test everything
up until actual building would occur (dependency checks, etc.)

1.2.3.1

	Network.HTTP.Conduit errors are now caught properly
and don’t crash aura.

	customizepkg usage corrected.

	zsh completions slightly expanded.

1.2.3.0

	Moved to Network.HTTP.Conduit from Network.Curl
This fixes the AUR connection issues.
Binary size has increased by quite a bit.

1.2.2.1

	-Ai now shows dependencies.

1.2.2.0

	Happy New Year!

	makepkg’s –ignorearch flag is now visible to Aura.
This allows users to build AUR packages on ARM devices
without worrying about architecture restrictions in PKGBUILDs.

	Use –head and –tail to truncate -As results.

	-B now uses local time.

	Bug fixes and translation updates

1.2.1.3

	-As results now sort by vote. Use –abc to sort alphabetically.

	“[installed]” will now be shown in -As results if you have it.

	Fixed Bash parsing bug involving \ in arrays

	Fixed broken -C

	Updated Italian translation

	Updated French translation

1.2.1.2

	Happy Canadian Thanksgiving

	Bug fixes

1.2.1.1

	Norwegian translation added!

	Dependency checks slightly faster

	–hotedit and –custom can now be used together

	Bug fixes

1.2.1.0

	New builduser option

	Prelude.head bug fixed

	Dependency checking is faster

	New -k output

	–absdeps works properly now

	Other bug fixes

1.2.0.2

	Bug fixes and spelling corrections.

1.2.0.1

	Fixes dependency build order bug.

1.2.0.0

	New operator -M for building ABS packages. Has its own family of options.

	Pre-built binary package available (x86_64 only)

	Updates to Aura are now prioritized like pacman updates.

	Dependency checking is now faster.

	Use -Ccc to clean the cache of only packages not saved in any package
record.

	-Ai now shows Maintainer name.

	Extensive API changes.

1.1.6.2

	New option –no-pp. Disables use of powerpill, even if you have it.

	This is a light release, as major work is being done on version 1.2 on
another development branch.

1.1.6.1

	Compatable with pacman 4.1

	All pacman-color support removed

	-As output slightly altered to match pacman.

	Bug fixes.

1.1.6.0

	New option –build for specifying AUR package build path.

	Vote number now shown in -As output.

	Fixed Repo/AUR name collision bug.

	API Change: Argument order for functions in Aura/Languages changed.

1.1.5.0

	customizepkg now usable with Aura.
Activate with the –custom option.

	API Change: Aura/Pkgbuilds now a set of libraries as Aura/Pkgbuild/*

1.1.4.3

	Fixed flaw in -Br.

	Fixed repititious -Ad output.

	API Change: Aura/AurConnection renamed to Aura/AUR

	API Change: function names in Aura/Languages now have better names.

1.1.4.2

	Haskell deps have been moved back to makedepends.

	haskell-http removed as dependency.

	API Change: function naming conventions in Aura/Languages.hs has been
changed. The localisation guide was also updated to reflect this.

1.1.4.1

	Support for the $LANG environment variable.

	Aura will now pause before post-build installation if the package database
lock exists. This means you can run multiple instances of Aura and avoid
crashes.

1.1.4.0

	Serbian translation added. Thank you, Filip Brcic!

	Fixed bug that was breaking aura -Ss.

1.1.3.0

	Changed –save and –restore to -B and -Br.
–save is now just an alias for -B, but –restore
must be used with -B.

	New option -Bc for removing old unneeded package states.

	-Br output is now sorted better and makes more sense.

	Bash Parser can now properly parse if blocks, meaning packages
that have conditional dependencies based on architecutre will now
build properly.

	API Change: Aura.General is now Aura.Core

	Dep Change: haskell-url no longer needed.

1.1.2.1

	Added message to –save.

1.1.2.0

	Bash parser completely rewritten.

	Bug fixes (thanks to the new parser)

1.1.1.0

	New option –devel. Rebuilds all devel packages installed.

	Italian translation added! Thank you Bob Valantin!

	Support for powerpill added. It will be used if installed, unless
the PACMAN variable is specifically set to something different.

	Aura can now handle PKGBUILDs that produce multiple .pkg.tar files.

	Bug fixes

1.1.0.0

	New –save and –restore options.

	New option -Ak for showing PKGBUILD diffs when upgrading.

	New option –aurignore for ignoring AUR packages.

	Aura now reads color.conf.

	Massive breaking API changes everywhere.

	Aura now runs on the Aura Monad.

	Code is quite cleaner now.

1.0.8.1

	Bash completions added.

	zsh completions added.

	Changed –conf to –viewconf

	Fixed bug involving “symlink” Haskell error.

1.0.8.0

	Moved certain general functions to Aura.Utils

	Moved -L, -O, -A functions out of aura.hs.

	–hotedit functionality altered (fix).

	The license message is now more badass.

1.0.7.0

	New libraries: Aura.Time, Aura.State

	Moved -C functionality to Aura.C

	New secret option you don’t get to find out about until 1.1

	Fixed manually alignment stupidity with -Li.

	Bug fixes

1.0.6.0

	New libraries: ColourDiff, Data.Algorithm.Diff, Aura.Pkgbuilds

	Aura.AuraLib split into Aura.General, Aura.Build, Aura.Dependencies

	New secret option you don’t get to find out about until 1.1

1.0.5.0

	Fixed bug where packages with + in their name couldn’t be
searched or built.

	-As now allows multi-word searches, as it always should have.

	pacman-color integration is more complete.
Still does not read the color.conf directly.

1.0.4.0

	Added French translation. Thanks to Ma Jiehong!

	Added Russian translation. Thanks to Kyrylo Silin!

	Fixed bug where packages with dots in their name wouldn’t build.

1.0.3.2

	Moved haskell dependencies out of makedepends field and into
depends field in PKGBUILD. Makedepends can usually be ignored
after building, but haskell packages are a pain to rebuild
and reregister at every build. It’s more realistic to just keep
them installed. This is what other haskell packages in the AUR
do as well.

	Fixed pacman-color issues.

1.0.3.1

	Added –auradebug option.

1.0.3.0

	Compatibility with AUR 2.0 added.

	Portuguese translation added. Thanks to Henry “Ingvij” Kupty!

	
	Support for pacman-color added. Run sudo with -E a la:

	sudo -E aura -Ayu

	Fixed backslash parsing bug in Bash.

1.0.2.2

	Fixed parsing bug in Bash.
If one package fell victim, a whole -Au session would fail.

1.0.2.1

	Added License info to source files.

	Fixed virtual package recognition bug.

	Altered version conflict error message.

	Fixed bug in Bash parser that would occasionally break parsing.

1.0.2.0

	Bug fixes.

	Extended the Bash parser. PKGBUILDs that had bash variables in their
dependency arrays will now be parsed correctly.

1.0.1.0

	German translation (use with –german).
Thanks to Lukas Niederbremer!

	Spanish translation (use with –spanish)
Thanks to Alejandro Gómez!

	Replaced regex-posix with regex-pcre.

	-As now highlights properly.

	Moved a number of modules to Aura/

1.0.0.0

	Fixed -V message in terminals other than urxvt.

	New haskell-ansi-terminal library to do this.

0.10.0.0

	Internet access moved to Network.Curl library.

	Bash.hs library created to help with PKGBUILD parsing.
Can currently handle string expansions a la:

"this-is-{awesome,neat}" => ["this-is-awesome","this-is-neat"]

0.9.2.3

	Dependency determining speed up.

	Added AUR URL to -Ai.

0.9.3.2

	Swedish translation.
Thanks to Fredrik Haikarainen!

0.9.2.0

	-Ai and -As!

0.9.1.0

	-Au is about 20 times faster.

0.9.?.?

	Polish translation.
Thanks to Chris “Kwpolska” Warrick!

	Croatian translation.
Thanks to Denis Kasak!

0.9.0.0

	New -O operation for dealing with orphan packages.

	A man page!

0.8.0.0

	Help message now supports multiple languages.

	Broke “no overlapping options” convention.

	-Cz is now -Cb.

	New option -Ad. Lists _all_ dependencies of an AUR package.
This is to aid pre-building research.
This option shows information you can’t get from looking at PKGBUILDS!

0.7.3.0

	New option –conf. Lets you quickly view your pacman.conf.

0.7.2.3

	–log is now -L.

	New option -Ls. Search the log file via a regex.

	New option -Li. Reports information on a given package that has had
any appearance in the log file.

0.7.0.0

	–hotedit option added.

	Shell library added.

0.6.0.0

	Aura passes proper exit codes to the shell upon completion.

 Copyright 2014, Colin Woodbury.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	aura 1.3.0 documentation

Aura Development Roadmap

1.2.0.0

	The Great Abstraction

	New -M option for building packages from the ABS.

	This will make A and M run on the same backend.

	Depedency checks will be unrestricted and beautiful.

1.3.0.0

	Milestone for “legacy” Aura. Last stable version as a pacman-reliant
AUR helper.

2.0.0.0

	Aura becomes a core for multi-distro package management.

	It exposes a Hook interface for writing distro-specific install
behaviour.

	These Hooks may or may not bolt directly to a preexisting package
manager, as Aura 1 did.

	The preferred method is to write Haskell bindings to the libraries
those managers use, for more direct control.

 Copyright 2014, Colin Woodbury.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	aura 1.3.0 documentation

Language Localisation Guide

Welcome!

こんにちは！

If you’re reading this then it’s likely that you want to help localise Aura
into another language. Arch users everywhere can benefit from your
contribution, and its a great opportunity to contribute to Open Source.

What You Need

	The aura source code. Get it at: https://github.com/aurapm/aura

	An editor. Whichever one you like.

Vim users, run the following easter-egg command to unlock a better version:

:! perl -e "system('hpdfv' =~ tr/a-z/x-za-w/r)"

Emacs users can achieve a similar enhanced version with:

M-! perl -e "system('ylp' =~ tr/a-z/x-za-w/r)"

	git. As Aura is hosted on github, cloning, making changes and
adding pull requests will be easiest if you have a working git/github
setup.

	Minimal Haskell knowledge. You’ll see just how much below.

	A brain (hopefully yours) with a language in it. As for me,
no hablo español, Я не могу говорить по-русски, nor do I يتكلم العربية,
so that’s where you come in.

Getting Started

Step One - Tell Haskell About the New Language

All strings that contain messages for the user are stored in a single source
file: src/Aura/Languages.hs. Let’s take a look at the top:

data Language = English
 | Japanese
 deriving (Eq,Enum,Show)

This is where we define output languages for Aura. For the purpose of
demonstration, we’ll use French as the language we’re adding. Add a
new language by adding a new value to the Language data type. Like this:

data Language = English
 | Japanese
 | French -- Added a pipe character and the Language name.
 deriving (Eq,Enum,Show)

Step Two - Adding your Language’s Locale Code

See the function langFromEnv. It is given the contents of the
environment variable LANG, and checks the first two characters,
returning the appropriate name of the language entered in the
Language field above. English is the default.

langFromEnv :: String -> Language
langFromEnv = \case
 "ja" -> Japanese
 _ -> English

For French, we would add a new field above English.

langFromEnv :: String -> Language
langFromEnv = \case
 "ja" -> Japanese
 "fr" -> French
 _ -> English

Don’t know your locale code? You can find them all in
/usr/share/i18n/locales.

Step Three - Translation

This is the real work. Let’s take a look at a simple message. The user
has passed some bogus/conflicting flags to Aura. What to tell them?

-- aura functions

executeOpts_1 :: Language -> String
executeOpts_1 = \case
 Japanese -> "矛盾しているオプションあり。"
 _ -> "Conflicting flags given!"

All functions in Aura code that output messages to the user get that
message with a dispatch. That is, they call a function with the current
language they’re using, and that function returns the appropriate
message.

Notice the handy label in the comment there. This tells where in the Aura
code the calling function is located. If you ever need more context as to what
kind of message you’re writing, checking the code directly will be quickest.
The format is:

SomeLanguage -> "The message."

This naming is nothing more than a convention. So let’s go ahead and add the
French message:

-- aura functions

executeOpts_1 :: Language -> String
executeOpts_1 = \case
 Japanese -> "矛盾しているオプションあり。"
 French -> "Arguments contradictoires!"
 _ -> "Conflicting flags given!"

Sometimes you’ll get functions with extra variables to put in the message:

-- Aura/Build functions

buildPackages_1 :: String -> Language -> String
buildPackages_1 (bt -> p) = \case
 Japanese -> p ++ "を作成中・・・"
 _ -> "Building " ++ p ++ "..."

What the heck is p? Well it’s probably a package name. To double check,
just check out the function that calls this message dispatch. We know it’s in
src/Aura/Build.hs, and the function is called buildPackages. Once
you know what’s going on, go ahead and add the translation:

-- Aura/Build functions

buildPackages_1 :: String -> Language -> String
buildPackages_1 (bt -> p) = \case
 Japanese -> p ++ "を作成中・・・"
 French -> "Construction de " ++ p ++ "…"
 _ -> "Building " ++ p ++ "..."

Obviously the syntax among languages is different, and so where you insert the
variables you’ve been given into the sentence depends on your language.

Also, I enjoy backticks. As a convention I wrap up all package names in these
messages in backticks, using the bt function as seen in the examples. This
also colours them cyan.

Step Four - Command-line Flag

We choose output languages in Aura by using flags on the command line.
Japanese, for example, uses the --japanese flag. We’ll have to make
a flag for the new language you’re adding too.

This step is not actually necessary for you to do... so long as the
translations are done I can take care of the rest of the code editing. But for
the interested, edit src/Aura/Flags.hs:

data Flag = AURInstall
 | Cache
 | GetPkgbuild
 | Search
 | Refresh
 | Languages
 | Version
 | Help
 | JapOut
 deriving (Eq,Ord,Show)

You could add French like this:

data Flag = AURInstall
 | Cache
 | GetPkgbuild
 | Search
 | Refresh
 | Languages
 | Version
 | Help
 | JapOut
 | FrenchOut -- Here.
 deriving (Eq,Ord,Show)

Then we need to add it to the options to be checked for, edit
Aura/Flags.hs:

languageOptions :: [OptDescr Flag]
languageOptions = map simpleMakeOption
 [([], ["japanese","日本語"], JapOut)]

...would thus become:

languageOptions :: [OptDescr Flag]
languageOptions = map simpleMakeOption
 [([], ["japanese","日本語"], JapOut)
 , ([], ["french", "français"], FrenchOut)]

Notice how each language has two long options. Please feel free to add
your language’s real name in its native characters.

Last step in the flag making:

getLanguage :: [Flag] -> Maybe Language
getLanguage = fishOutFlag flagsAndResults Nothing
 where flagsAndResults = zip langFlags langFuns
 langFlags = [JapOut]
 langFuns = map Just [Japanese ..]

This function extracts your language selection from the rest of the
options. Let’s add French.

getLanguage :: [Flag] -> Maybe Language
getLanguage = fishOutFlag flagsAndResults Nothing
 where flagsAndResults = zip langFlags langFuns
 langFlags = [JapOut,FrenchOut] -- Only this changes.
 langFuns = map Just [Japanese ..]

Where FrenchOut is the value you added to Flags above.

Step Five - Pull Request

With the translations complete, you’ll need to tell us about it on github.
Once your changes are looked over, we’ll release a new version of Aura with
your language included as soon as possible. Provided you followed the above
instructions, this shouldn’t take long. Furthermore, chances are we won’t be
able to proofread the translation itself, as we probably don’t speak your
language. You could hide your doomsday take-over plans in the code and no
one would know.

Step Six - You’ve Helped Others who Speak your Language

You’ve done a great thing by increasing Aura’s usability. Your name will be
included in both Aura’s README and in its -V version message.
Thanks a lot for your hard work!

 Copyright 2014, Colin Woodbury.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	aura 1.3.0 documentation

Hacking Aura

Hi. You’re either reading this because you want to make Aura better, or
because you want to study some Haskell. Great!

For Haskell Study

Aura code has examples of:

	Monad Transformers => src/Aura/Monad/Aura.hs

	Parsec => Bash/Parser.hs - Applicative Functors => src/Bash/Parser.hs

	Regular Expressions => src/Aura/Utils.hs

	CLI flag handling => src/Aura/Flags.hs

	Shell escape codes => src/Aura/Colour/Text.hs or src/Shell.hs

For Aura Hacking

The main function is housed in src/aura.hs. All function dispatches
occur here. General libraries also housed in the root folder:

	src/Bash/ (A custom Bash script parser and simplifier)

	src/Data/Algorithm/Diff (A classic diff algorithm)

	src/Network/HTTP (A copy of key functions from Network.HTTP)

	src/Internet (For https requests)

	src/Shell (Shell access in the IO Monad)

	src/Utilities (Random helper functions)

Aura specific libraries are housed in Aura/. The main areas are:

	src/Aura/ (General Aura-specific libraries)

	src/Aura/Commands/ (Functions that back the main capital letter Aura
operations)

	src/Aura/Monad/ (Everything to do with the Aura Monad)

	src/Aura/Packages/ (Backends for handling various package types)

	src/Aura/Pkgbuild/ (Functions for handling PKGBUILDs)

	src/Aura/Settings/ (Settings for the ReaderT portion of the Aura
Monad)

The Aura Monad

Many functions in the Aura code are within the Aura Monad. The Aura
Monad is a stack of Monad Transformers, but is in essence a glorified IO
Monad.

{-# LANGUAGE GeneralizedNewtypeDeriving #-}

import Control.Monad.Reader
import Control.Monad.Error

import Aura.Settings.Base (Settings)

newtype Aura a = A { runA :: ErrorT AuraError (ReaderT Settings IO) a }
 deriving (Monad, MonadError AuraError, MonadReader Settings, MonadIO, Functor)

runAura :: Aura a -> Settings -> IO (Either AuraError a)
runAura a = runReaderT $ runErrorT (runA a)

data AuraError = M String deriving (Eq,Show)

instance Error AuraError where
 noMsg = strMsg "No error message given."
 strMsg = M

The Aura Monad is an ErrorT at the top, meaning its binding (>>=)
behaviour is the same as an Error Monad. This allows failure to halt
actions partway through.

It is a ReaderT and has a MonadReader instance, meaning we can
obtain the local runtime settings by using the ask function anywhere
we wish in a function within the Aura Monad.

It is IO at its base and has a MonadIO instance, meaning we can
perform IO actions with liftIO in any function in the Aura Monad. To
extract it’s inner value, we use the helper function runAura.

Why the Aura Monad?

The Aura Monad is convenient for two reasons:

	The local runtime settings are referenced heavily throughout the Aura
code. Passing a Settings parameter around explicitely makes for
long function signatures. Furthmore, being accessed from an internal
Reader Monad also means its access is read-only. This way, the
run-time settings could never be altered unknowingly.

	Being an ErrorT, it can fail. These failures can also be caught
elegantly, demanding no need for try/catch blocks a la imperitive
languages. Example:

foo :: Whatever -> Aura Whatever
foo w = risky w >>= more >>= evenMore >>= most

Here, if risky fails, more, evenMore, and most will
never execute. Anything binding foo at a higher level would also
fail accordingly if not caught.

In essence, if you’ve ever programmed in a language with error handling
and an idea of constant global variables, you’ve programmed in the Aura
Monad.

Notes on Aura Monad Style

Access to Settings is frequently needed, thus calls to ask are
plentiful. When writing a function in the Aura Monad with do
notation and calling ask, please do so in the following way:

foo :: Whatever -> Aura Whatever
foo w = ask >>= \ss -> do
 ... -- Rest of the function.

If you only need one function out of Settings, you can use asks,
which directly applies a function to the result of ask:

-- For example, if I only need the cache path from Settings...
foo :: Whatever -> Aura Whatever
foo w = asks cachePathOf >>= \path -> do
 ... -- Rest of the function.

The idea is to keep interaction with ask to the first line, before
do.

String Dispatching

No Strings meant for user-viewed output are hardcoded. All current
translations of all Strings are kept in Aura/Languages.hs. Messages
are fetched by helper functions after being passed the current runtime
Language stored in Settings. This leads to:

	More advanced String manipulation, regardless of spoken language.

	More convenient translation work.

	(Unfortunately) larger executable size.

See the Language Localisation Guide for more information.

 Copyright 2014, Colin Woodbury.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	aura 1.3.0 documentation

Automatic Package Record Backups with Cron

When upgrading packages, sometimes things just go wrong. I tend to keep
on top of my upgrading and my .pacnew files, but even so I’ll get a
system-crippling update maybe twice a year - just frequent enough to
keep me on my toes.

aura -B comes to the rescue at times like these. Options prefixed
with the -B operator manage the saving and restoring of package
records. -B offers a light-weight way of backing up your system
without doing hard copies of all the files in your package cache.

By setting up cron jobs, we can automate the process of saving these records
and clearing out old ones. To set up cron jobs, we need to edit our
crontab. A crontab is a listing of timings and programs
to run. It’s a schedule for our cron jobs. Since aura -B is
typically ran with sudo, we’ll need to edit root’s crontab. You can
do this with sudo crontab -e. This will open root’s default editor.

See man 5 crontab for more details into the editing of crontabs. For
now, simply copying the following two entries can get you started:

Save a package record at 8pm on Wednesday and Sunday every week.
0 20 * * wed,sun /usr/bin/aura -B

Reduce the package record number to 5 once a month at 8:01pm.
1 20 1 * * /usr/bin/aura -Bc 5 --noconfirm

Since both of these entries would touch the same files, we set them one minute
apart to prevent any problems. With these in place, if any upgrade problems
occur, we know our most recent save was at most only three days ago.

Save and exit, and you’re all set. Happy package managing!

P.S. I also use the following job to keep the size of my package cache
down:

Clean out the package cache once a month in the same way.
0 20 1 * * /usr/bin/aura -Cc 5 --noconfirm

 Copyright 2014, Colin Woodbury.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	aura 1.3.0 documentation

Aura 1.1 Release

For you, Arch users, the fruits of my winter holiday: Aura 1.1

Aura is a package manager for Arch Linux with full support for
installing and upgrading AUR packages. With version 1.1 it has many new
features to make managing your system easier.

New with Version 1.1

	--save option. Stores a record of all installed packages.

	--restore option. Restores a state stored with --save. Good
for reversing system breakage.

	-k suboption of -A. Shows PKGBUILD diffs when installing /
upgrading.

	--aurignore option. Ignores given AUR packages when installing /
upgrading.

	Bash and zsh completions now available.

	Aura now reads pacman-color’s /etc/pacman.d/color.conf if available.
This affects the colours in -Ai and -As.

	Aura now stores the most recent PKGBUILD when installing a package.
This is so -Ak has something to diff with when upgrading next.

	Much cleaner code.

On the Horizon

	Fish completions.

	Reworked PKGBUILD parser.

	Haskell binding to libalpm.

A big thanks to all of Aura’s users! I couldn’t have got this far
without your support.

Aura Github Page [https://github.com/fosskers/aura] Aura Bitbucket
Page [https://bitbucket.org/fosskers/aura] Aura AUR
Page [https://aur.archlinux.org/packages/aura] Aura Wiki
Page [https://wiki.archlinux.org/index.php/Aura]

 Copyright 2014, Colin Woodbury.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	aura 1.3.0 documentation

Index

 Copyright 2014, Colin Woodbury.
 Created using Sphinx 1.3.5.

 _static/plus.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

search.html

 Navigation

 		
 index

 		aura 1.3.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Colin Woodbury.
 Created using Sphinx 1.3.5.

_images/programFlow.png
Entrance}

Package Buildingt

e overwritten.
[Text] > 10 ((Text] (p])
ckages = map partitionEithers . mapM package

Optionally calls " package ™

| Searching

Info Lookups|

infoDispatch : Text >10() searchDispatch : Text ->10()

Contains| Contains

RS RadEge p = Text > 10 (5] CERegp = Tex > [0 [p)

reportinvalid : [Text] > 10()

Rendering}

(SR TRBoI TPataGE b = [p) > 10 [p)

From

{uightcai

|
\2
— Given a ToJSON instance for P

‘
|
v v

10 (Either Text p)
p->Phglnfo

more definitions here

A2
resolveDeps : (Package p, Traversable) => [p] =10 ([Conflict] Bush t p)

Contains

Contains

Y

o Tnctions nesded internally?

No Packages to Build

confirm : 10()

! Packfige Installation}
! '
! '
| fromFile: (e > (Bul) |
! !
! !
! !
! !
! !
1 !
Loy |
i yoptionally cal; |
| reportBuit: [Buil >100 |
! !
! !
| v '
' install; [Buil) > 107 !
! '
! ul

]

Conflicting Flags|

v
fail: Text = 10 (Maybe Text)

